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Abstract. The tunnel splitting in biaxial antiferromagnetic particles is studied with a magnetic
field applied along the hard anisotropy axis. We observe the oscillation of tunnel splitting as a
function of the magnetic field due to the quantum phase interference of two tunnelling paths of
opposite windings. The oscillation is similar to the recent experimental result with Fe8 molecular
clusters.

The macroscopic quantum phenomenon of magnetic particles at low temperature has attracted
considerable attention both theoretically and experimentally in recent years [1–3]. The
magnetization vector in solids is traditionally viewed as a classical variable. The quantum
transition of the magnetization vectorM between different easy directions in a single domain
ferromagnetic (FM) grain, in particular the coherent tunnelling between two degenerate
orientations of the magnetization called the macroscopic quantum coherence (MQC) [4], has
been studied extensively for its exotic characters far from that of classical system. Quenching
of MQC for half-integer spin is a fascinating effect [5–8] and can be used to test the macroscopic
quantum tunnelling experimentally. The quenching of MQC in spin particles is analysed with
the help of the phase interference of spin coherent state-paths which possess a phase with an
obvious geometric meaning [5]. Although the quenching of MQC has been interpreted as
Kramers’ degeneracy, the effect of geometric phase interference is far richer than that. By
investigating the quantum tunnelling in biaxial ferromagnetic particles with a magnetic field
applied along the hard axis, Garg [9] found a new quenching of tunnelling splitting which is not
related to Kramers’ degeneracy since the external field breaks the time reversal symmetry. The
Zeeman energy of the biaxial spin particle in the external magnetic field results in additional
topological phases of the tunnel paths which lead to the quantum phase interference. The
tunnelling splitting therefore oscillates with respect to the magnetic field.

According to a recent report [10] the oscillation of tunnelling splitting was observed
experimentally in molecular clusters Fe8 which at low temperature behave like a nanomagnet,
namely, a ferromagnetic particle. A more detailed analysis of quantum phase interference
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with instanton method in the context of spin coherent-state-path-integrals has been given
recently [11]. In this letter we investigate the similar effect of quantum phase interference in
antiferromagnetic (AFM) particles. Since the tunnelling rate in AFM particles is much higher
than that in FM particles of the same volume [12], the AFM particles are expected to be a better
candidate for the observation of MQP than the FM particles [12]. The AFM particle is usually
described by the Ńeel vector of the two collinear sublattices whose magnetizations are coupled
by strong exchange interaction. The external magnetic field does not play a role since the net
magnetic moment vanishes for idealized sublattices. The quantum and classical transitions
of the Ńeel vector in antiferromagnets have been well studied [13] in terms of the idealized
sublattice model. The temperature dependence of quantum tunnelling was also given for the
same model [14] and the theoretical result agrees with the experimental observation [15]. A
biaxial AFM particle with a small non-compensation of sublattices in the absence of an external
magnetic field was studied in [16] where it was shown that the uncompensated magnetic
moment leads to a modification of the oscillation frequency around the equilibrium orientations
of the Ńeel vector. In this letter we demonstrate that the uncompensated magnetic moment of
a small biaxial AFM particle possesses a Zeeman energy in an external magnetic field applied
along hard axis and thus a topological phase depending on the magnetic field is introduced
similarly to the phase in ferromagnetic particles [9]. The quantum phase interference results
in the oscillation of tunnelling splitting as a function of magnetic field which may be regarded
as a kind of Aharonov–Bohm effect.

We consider in the following a biaxial AFM particle of two collinear FM sublattices with
a small non-compensation. Assuming that the particle possesses aX easy axis andXY easy
plane , and the magnetic fieldh is applied along the hard axis (Z axis), the Hamiltonian operator
of the AFM particle has the form

Ĥ =
∑
a=1,2

(
k⊥Ŝz2a + kqŜ

y2
a − γ hŜza

)
+ J Ŝ1Ŝ2 (1)

where k⊥, kq > 0 are the anisotropy constants,J is the exchange constant,γ is the
gyromagnetic ratio, and the spin operators in two sublatticesŜ1 and Ŝ2 obey the usual
commutation relation [̂Sia, Ŝ

j

b ] = ih̄εijkδabŜ
k
b (i, j, k = x, y, z; a, b = 1, 2). The matrix

element of the evolution operator in spin coherent-state representation is

〈Nf |e−2iĤT /h̄|Ni〉 =
∫ [

M−1∏
k=1

dµ (Nk)

][
M∏
k=1

〈Nk|e−iεĤ/h̄|Nk−1〉
]
. (2)

Here we define|N〉 = |n1〉|n2〉, |NM〉 = |Nf 〉 = |n1,f 〉|n2,f 〉, |No〉 = |Ni〉 = |n1,i〉|n2,i〉,
tf − ti = 2T andε = 2T/M. The spin coherent state is defined as

|na〉 = e−iθaĈ |Sa, Sa〉 (a = 1, 2) (3)

wherena = (sinθacosφa, sinθasinφa, cosθa) is the unit vector,Ĉa = sinφaŜxa − cosφaŜ
y
a and

|Sa,Sa〉 is the reference spin eigenstate. The measure is defined by

dµ (Nk) =
∏
a=1,2

2Sa + 1

4π
dna,k dna,k = sinθa,kdθa,kdφa,k. (4)

In the largeS limit we obtain [17]

〈Nf |e−2iĤT /h̄|Ni〉 = e−iS0(φf−φi)
∫ ∏

a = 1, 2D[θa]D[φa] exp

(
i

h̄

∫ tf

ti

Ldt

)
. (5)

The Lagrangian is defined byL = L0 +L1 with

L0 =
∑

a = 1, 2Saφ̇a cosθa − JS1S2 [sinθ1 cosθ2 cos(φ1− φ2) + cosθ1 cosθ2] (6)
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L1 =
∑

a = 1, 2
(
k⊥S2

a cos2 θ + kqS
2
a sin2 θa sin2 φa − γ hSa cosθa

)
(7)

whereS0 = S1 + S2 is total spin of two sublattices. SinceS1 andS2 is almost antiparallel, we
may replaceθ2 andφ2 by θ2 = π − θ1− εθandφ2 = π +φ1 + ε

φ
, whereε

θ
andε

φ
denote small

fluctuations. Working out the fluctuation integrations overε
θ

andε
φ

the transition amplitude
(5) reduces to

〈Nf |e−2iĤT /h̄|Ni〉 = e−iS0(φf−φi)
∫ ∏

a = 1, 2D[θ ]D[φ] exp

(
i

h̄

∫ tf

ti

L̄dt

)
(8)

L̄ = �
[
m

γ
φ̇ cosθ +

χ⊥
γ
Hφ̇sin2θ +

χ

2γ 2

(
θ̇2 + φ̇2 sin2 θ

)]− V (θ, φ) (9)

whereV (θ, φ) = (�K⊥ cos2 θ +Kq sin2 θ sin2 φ −mh cosθ − χ⊥
2 h

2 sin2 θ
)
,and(θ1, φ1)has

been replaced by(θ, φ). m = γ h̄ (S1− S2) /� with � being the volume of the AFM particle
andχ⊥ = γ 2

J
. K⊥ = 2k⊥S2/� andKq = 2kqS2/� (settingS1 = S2 = S except in the

term containingS1 − S2) denote the transverse and the longitudinal anisotropy constants,
respectively.

We assume a very strong transverse anisotropy, i.e.K⊥ �Kq. In this case the Ńeel vector
is forced to lie near theXY plane. Replacingθ by π

2 + η whereη denotes the small fluctuation
and carrying out the integral overη we obtain

〈Nf |e−2Ĥβ/h̄|Ni〉 =
∫
D[φ] exp

(
−1

h̄

∫ τf

τi

Leff dτ

)
(10)

where

Leff = I

2

(
dφ

dτ

)2

+ i2
dφ

dτ
+ V (φ) (11)

is the effective Euclidean Lagrangian.τ = it and β = iT . I = �
(
Ia + If

)
where

Ia = m2/
(
2γ 2K⊥

)
andIf = χ⊥/γ 2 are the effective FM and AFM moments of inertia [18],

respectively.V (φ) = �Kq sin2 φ is the effective potential and2 = h̄S0 − Iγ h. The second
term in (11), i.e.i2(dφ/dτ) which is the total time derivative has no effect on the classical
equation of motion, however it leads to a path dependent phase in Euclidean action. The
classical equation of motion is seen to be

I

2

(
dφ

dτ

)2

− V (φ) = 0 (12)

φ = 0 andπ are two equilibrium orientation of the Ńeel vector. The Ńeel vector may transit
by tunnelling through potential barriers from one orientation (φ = 0) to another (φ = π ) along
clockwise or anticlockwise paths. The instanton solutions of (12) are then obtained as

φ±c (τ ) = ±2 arctan(eω0τ ) (13)

whereω0 =
√

2Kq�/I is the small oscillation frequency of the Néel vector around its
equilibrium orientation. φ−c (τ ) andφ+

c (τ ) denote instanton solutions with clockwise and
anticlockwise windings respectively. The Euclidean actions evaluated along the instanton
trajectories are seen to be

S±E =
∫
Leff dτ = 2Iω0 ±2π. (14)

The quantum phase interference of clockwise path ‘−’ and anticlockwise path ‘+’ is seen to
be (see figure 1)
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Figure 1. Quantum phase interference of two tunnel paths of opposite windings.

e−S
+
E + e−S

−
E ∼ e−2Iω0/h̄ cos(3π) (15)

where3 = 2
h̄
= S0 + h

hc
with hc = h̄

γ I
. Since the potentialV (φ) is periodic and can

be regarded as a one-dimensional superlattice. Using the Bloch theory the low-lying energy
spectrum could be determined as [19]

E0 = ε0 − 21ε0 cosπ (3 + ξ) . (16)

Whereξ is Bloch wave vector which can be assumed to take either of the two values 0 and
1 [20]. 1ε0 = (2h̄ω0ÿ/πe−2Iω0/h̄ is the usual overlap integral or simply the level shift induced
by tunnelling through any one of the barriers. Thus the tunnelling splitting is seen to be

1ε = |21ε0 cosπ (3 + 1)− 21ε0 cosπ3| = 41ε0 |cosπ3| (17)

which is a function of the external magnetic field like in the ferromagnetic particle case [9–11].
Whenh = 0, (17) reduces to the previous result [16] where the tunnelling splitting is quenched
whenS0 = half − integer. With nonzero magnetic field the tunnelling splitting would be
quenched whenever3 = n + 1

2 or h = (
S0 − n− 1

2

)
h̄/Iγ wheren is an integer. Figure 2

shows the oscillation of the tunnelling splitting with respect to the external magnetic field.
This quenching is due to the quantum phase interference of two tunnelling paths of opposite
windings. The period of oscillation is given by

1h = h̄

Iγ
. (18)

 0

∆ε/∆ε0

h/h
c

Figure 2. Oscillation of tunnelling splitting as a function of the external field with the solid line
for S0 = half-integer and the dotted line forS0 = integer.
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We have demonstrated a macroscopic quantum interference effect in the tunnelling of
the magnetization of antiferromagnetic particles. Such particles thus open a new avenue
to test macroscopic quantum interference effects. Experimental tests of our prediction could
therefore make an important contribution to our understanding of the transition region between
the microscopic and the macroscopic world.
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